Squashed 'deps/nostalgia/' content from commit 9cb6bd4a

git-subtree-dir: deps/nostalgia
git-subtree-split: 9cb6bd4a32e9f39a858f72443ff5c6d40489fe22
This commit is contained in:
2023-12-23 14:17:05 -06:00
commit 587dd92414
1112 changed files with 283489 additions and 0 deletions

93
deps/glfw/examples/CMakeLists.txt vendored Normal file
View File

@ -0,0 +1,93 @@
link_libraries(glfw)
include_directories("${GLFW_SOURCE_DIR}/deps")
if (MATH_LIBRARY)
link_libraries("${MATH_LIBRARY}")
endif()
# Workaround for the MS CRT deprecating parts of the standard library
if (MSVC OR CMAKE_C_SIMULATE_ID STREQUAL "MSVC")
add_definitions(-D_CRT_SECURE_NO_WARNINGS)
endif()
if (WIN32)
set(ICON glfw.rc)
elseif (APPLE)
set(ICON glfw.icns)
endif()
if (${CMAKE_VERSION} VERSION_EQUAL "3.1.0" OR
${CMAKE_VERSION} VERSION_GREATER "3.1.0")
set(CMAKE_C_STANDARD 99)
else()
# Remove this fallback when removing support for CMake version less than 3.1
add_compile_options("$<$<C_COMPILER_ID:AppleClang>:-std=c99>"
"$<$<C_COMPILER_ID:Clang>:-std=c99>"
"$<$<C_COMPILER_ID:GNU>:-std=c99>")
endif()
set(GLAD_GL "${GLFW_SOURCE_DIR}/deps/glad/gl.h"
"${GLFW_SOURCE_DIR}/deps/glad_gl.c")
set(GETOPT "${GLFW_SOURCE_DIR}/deps/getopt.h"
"${GLFW_SOURCE_DIR}/deps/getopt.c")
set(TINYCTHREAD "${GLFW_SOURCE_DIR}/deps/tinycthread.h"
"${GLFW_SOURCE_DIR}/deps/tinycthread.c")
add_executable(boing WIN32 MACOSX_BUNDLE boing.c ${ICON} ${GLAD_GL})
add_executable(gears WIN32 MACOSX_BUNDLE gears.c ${ICON} ${GLAD_GL})
add_executable(heightmap WIN32 MACOSX_BUNDLE heightmap.c ${ICON} ${GLAD_GL})
add_executable(offscreen offscreen.c ${ICON} ${GLAD_GL})
add_executable(particles WIN32 MACOSX_BUNDLE particles.c ${ICON} ${TINYCTHREAD} ${GETOPT} ${GLAD_GL})
add_executable(sharing WIN32 MACOSX_BUNDLE sharing.c ${ICON} ${GLAD_GL})
add_executable(simple WIN32 MACOSX_BUNDLE simple.c ${ICON} ${GLAD_GL})
add_executable(splitview WIN32 MACOSX_BUNDLE splitview.c ${ICON} ${GLAD_GL})
add_executable(wave WIN32 MACOSX_BUNDLE wave.c ${ICON} ${GLAD_GL})
target_link_libraries(particles "${CMAKE_THREAD_LIBS_INIT}")
if (RT_LIBRARY)
target_link_libraries(particles "${RT_LIBRARY}")
endif()
set(GUI_ONLY_BINARIES boing gears heightmap particles sharing simple splitview
wave)
set(CONSOLE_BINARIES offscreen)
set_target_properties(${GUI_ONLY_BINARIES} ${CONSOLE_BINARIES} PROPERTIES
FOLDER "GLFW3/Examples")
if (GLFW_USE_OSMESA)
target_compile_definitions(offscreen PRIVATE USE_NATIVE_OSMESA)
endif()
if (MSVC)
# Tell MSVC to use main instead of WinMain
set_target_properties(${GUI_ONLY_BINARIES} PROPERTIES
LINK_FLAGS "/ENTRY:mainCRTStartup")
elseif (CMAKE_C_SIMULATE_ID STREQUAL "MSVC")
# Tell Clang using MS CRT to use main instead of WinMain
set_target_properties(${GUI_ONLY_BINARIES} PROPERTIES
LINK_FLAGS "-Wl,/entry:mainCRTStartup")
endif()
if (APPLE)
set_target_properties(boing PROPERTIES MACOSX_BUNDLE_BUNDLE_NAME "Boing")
set_target_properties(gears PROPERTIES MACOSX_BUNDLE_BUNDLE_NAME "Gears")
set_target_properties(heightmap PROPERTIES MACOSX_BUNDLE_BUNDLE_NAME "Heightmap")
set_target_properties(particles PROPERTIES MACOSX_BUNDLE_BUNDLE_NAME "Particles")
set_target_properties(sharing PROPERTIES MACOSX_BUNDLE_BUNDLE_NAME "Sharing")
set_target_properties(simple PROPERTIES MACOSX_BUNDLE_BUNDLE_NAME "Simple")
set_target_properties(splitview PROPERTIES MACOSX_BUNDLE_BUNDLE_NAME "SplitView")
set_target_properties(wave PROPERTIES MACOSX_BUNDLE_BUNDLE_NAME "Wave")
set_source_files_properties(glfw.icns PROPERTIES
MACOSX_PACKAGE_LOCATION "Resources")
set_target_properties(${GUI_ONLY_BINARIES} PROPERTIES
MACOSX_BUNDLE_SHORT_VERSION_STRING ${GLFW_VERSION}
MACOSX_BUNDLE_LONG_VERSION_STRING ${GLFW_VERSION}
MACOSX_BUNDLE_ICON_FILE glfw.icns
MACOSX_BUNDLE_INFO_PLIST "${GLFW_SOURCE_DIR}/CMake/MacOSXBundleInfo.plist.in")
endif()

679
deps/glfw/examples/boing.c vendored Normal file
View File

@ -0,0 +1,679 @@
/*****************************************************************************
* Title: GLBoing
* Desc: Tribute to Amiga Boing.
* Author: Jim Brooks <gfx@jimbrooks.org>
* Original Amiga authors were R.J. Mical and Dale Luck.
* GLFW conversion by Marcus Geelnard
* Notes: - 360' = 2*PI [radian]
*
* - Distances between objects are created by doing a relative
* Z translations.
*
* - Although OpenGL enticingly supports alpha-blending,
* the shadow of the original Boing didn't affect the color
* of the grid.
*
* - [Marcus] Changed timing scheme from interval driven to frame-
* time based animation steps (which results in much smoother
* movement)
*
* History of Amiga Boing:
*
* Boing was demonstrated on the prototype Amiga (codenamed "Lorraine") in
* 1985. According to legend, it was written ad-hoc in one night by
* R. J. Mical and Dale Luck. Because the bouncing ball animation was so fast
* and smooth, attendees did not believe the Amiga prototype was really doing
* the rendering. Suspecting a trick, they began looking around the booth for
* a hidden computer or VCR.
*****************************************************************************/
#if defined(_MSC_VER)
// Make MS math.h define M_PI
#define _USE_MATH_DEFINES
#endif
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <glad/gl.h>
#define GLFW_INCLUDE_NONE
#include <GLFW/glfw3.h>
#include <linmath.h>
/*****************************************************************************
* Various declarations and macros
*****************************************************************************/
/* Prototypes */
void init( void );
void display( void );
void reshape( GLFWwindow* window, int w, int h );
void key_callback( GLFWwindow* window, int key, int scancode, int action, int mods );
void mouse_button_callback( GLFWwindow* window, int button, int action, int mods );
void cursor_position_callback( GLFWwindow* window, double x, double y );
void DrawBoingBall( void );
void BounceBall( double dt );
void DrawBoingBallBand( GLfloat long_lo, GLfloat long_hi );
void DrawGrid( void );
#define RADIUS 70.f
#define STEP_LONGITUDE 22.5f /* 22.5 makes 8 bands like original Boing */
#define STEP_LATITUDE 22.5f
#define DIST_BALL (RADIUS * 2.f + RADIUS * 0.1f)
#define VIEW_SCENE_DIST (DIST_BALL * 3.f + 200.f)/* distance from viewer to middle of boing area */
#define GRID_SIZE (RADIUS * 4.5f) /* length (width) of grid */
#define BOUNCE_HEIGHT (RADIUS * 2.1f)
#define BOUNCE_WIDTH (RADIUS * 2.1f)
#define SHADOW_OFFSET_X -20.f
#define SHADOW_OFFSET_Y 10.f
#define SHADOW_OFFSET_Z 0.f
#define WALL_L_OFFSET 0.f
#define WALL_R_OFFSET 5.f
/* Animation speed (50.0 mimics the original GLUT demo speed) */
#define ANIMATION_SPEED 50.f
/* Maximum allowed delta time per physics iteration */
#define MAX_DELTA_T 0.02f
/* Draw ball, or its shadow */
typedef enum { DRAW_BALL, DRAW_BALL_SHADOW } DRAW_BALL_ENUM;
/* Vertex type */
typedef struct {float x; float y; float z;} vertex_t;
/* Global vars */
int windowed_xpos, windowed_ypos, windowed_width, windowed_height;
int width, height;
GLfloat deg_rot_y = 0.f;
GLfloat deg_rot_y_inc = 2.f;
int override_pos = GLFW_FALSE;
GLfloat cursor_x = 0.f;
GLfloat cursor_y = 0.f;
GLfloat ball_x = -RADIUS;
GLfloat ball_y = -RADIUS;
GLfloat ball_x_inc = 1.f;
GLfloat ball_y_inc = 2.f;
DRAW_BALL_ENUM drawBallHow;
double t;
double t_old = 0.f;
double dt;
/* Random number generator */
#ifndef RAND_MAX
#define RAND_MAX 4095
#endif
/*****************************************************************************
* Truncate a degree.
*****************************************************************************/
GLfloat TruncateDeg( GLfloat deg )
{
if ( deg >= 360.f )
return (deg - 360.f);
else
return deg;
}
/*****************************************************************************
* Convert a degree (360-based) into a radian.
* 360' = 2 * PI
*****************************************************************************/
double deg2rad( double deg )
{
return deg / 360 * (2 * M_PI);
}
/*****************************************************************************
* 360' sin().
*****************************************************************************/
double sin_deg( double deg )
{
return sin( deg2rad( deg ) );
}
/*****************************************************************************
* 360' cos().
*****************************************************************************/
double cos_deg( double deg )
{
return cos( deg2rad( deg ) );
}
/*****************************************************************************
* Compute a cross product (for a normal vector).
*
* c = a x b
*****************************************************************************/
void CrossProduct( vertex_t a, vertex_t b, vertex_t c, vertex_t *n )
{
GLfloat u1, u2, u3;
GLfloat v1, v2, v3;
u1 = b.x - a.x;
u2 = b.y - a.y;
u3 = b.y - a.z;
v1 = c.x - a.x;
v2 = c.y - a.y;
v3 = c.z - a.z;
n->x = u2 * v3 - v2 * u3;
n->y = u3 * v1 - v3 * u1;
n->z = u1 * v2 - v1 * u2;
}
#define BOING_DEBUG 0
/*****************************************************************************
* init()
*****************************************************************************/
void init( void )
{
/*
* Clear background.
*/
glClearColor( 0.55f, 0.55f, 0.55f, 0.f );
glShadeModel( GL_FLAT );
}
/*****************************************************************************
* display()
*****************************************************************************/
void display(void)
{
glClear( GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT );
glPushMatrix();
drawBallHow = DRAW_BALL_SHADOW;
DrawBoingBall();
DrawGrid();
drawBallHow = DRAW_BALL;
DrawBoingBall();
glPopMatrix();
glFlush();
}
/*****************************************************************************
* reshape()
*****************************************************************************/
void reshape( GLFWwindow* window, int w, int h )
{
mat4x4 projection, view;
glViewport( 0, 0, (GLsizei)w, (GLsizei)h );
glMatrixMode( GL_PROJECTION );
mat4x4_perspective( projection,
2.f * (float) atan2( RADIUS, 200.f ),
(float)w / (float)h,
1.f, VIEW_SCENE_DIST );
glLoadMatrixf((const GLfloat*) projection);
glMatrixMode( GL_MODELVIEW );
{
vec3 eye = { 0.f, 0.f, VIEW_SCENE_DIST };
vec3 center = { 0.f, 0.f, 0.f };
vec3 up = { 0.f, -1.f, 0.f };
mat4x4_look_at( view, eye, center, up );
}
glLoadMatrixf((const GLfloat*) view);
}
void key_callback( GLFWwindow* window, int key, int scancode, int action, int mods )
{
if (action != GLFW_PRESS)
return;
if (key == GLFW_KEY_ESCAPE && mods == 0)
glfwSetWindowShouldClose(window, GLFW_TRUE);
if ((key == GLFW_KEY_ENTER && mods == GLFW_MOD_ALT) ||
(key == GLFW_KEY_F11 && mods == GLFW_MOD_ALT))
{
if (glfwGetWindowMonitor(window))
{
glfwSetWindowMonitor(window, NULL,
windowed_xpos, windowed_ypos,
windowed_width, windowed_height, 0);
}
else
{
GLFWmonitor* monitor = glfwGetPrimaryMonitor();
if (monitor)
{
const GLFWvidmode* mode = glfwGetVideoMode(monitor);
glfwGetWindowPos(window, &windowed_xpos, &windowed_ypos);
glfwGetWindowSize(window, &windowed_width, &windowed_height);
glfwSetWindowMonitor(window, monitor, 0, 0, mode->width, mode->height, mode->refreshRate);
}
}
}
}
static void set_ball_pos ( GLfloat x, GLfloat y )
{
ball_x = (width / 2) - x;
ball_y = y - (height / 2);
}
void mouse_button_callback( GLFWwindow* window, int button, int action, int mods )
{
if (button != GLFW_MOUSE_BUTTON_LEFT)
return;
if (action == GLFW_PRESS)
{
override_pos = GLFW_TRUE;
set_ball_pos(cursor_x, cursor_y);
}
else
{
override_pos = GLFW_FALSE;
}
}
void cursor_position_callback( GLFWwindow* window, double x, double y )
{
cursor_x = (float) x;
cursor_y = (float) y;
if ( override_pos )
set_ball_pos(cursor_x, cursor_y);
}
/*****************************************************************************
* Draw the Boing ball.
*
* The Boing ball is sphere in which each facet is a rectangle.
* Facet colors alternate between red and white.
* The ball is built by stacking latitudinal circles. Each circle is composed
* of a widely-separated set of points, so that each facet is noticeably large.
*****************************************************************************/
void DrawBoingBall( void )
{
GLfloat lon_deg; /* degree of longitude */
double dt_total, dt2;
glPushMatrix();
glMatrixMode( GL_MODELVIEW );
/*
* Another relative Z translation to separate objects.
*/
glTranslatef( 0.0, 0.0, DIST_BALL );
/* Update ball position and rotation (iterate if necessary) */
dt_total = dt;
while( dt_total > 0.0 )
{
dt2 = dt_total > MAX_DELTA_T ? MAX_DELTA_T : dt_total;
dt_total -= dt2;
BounceBall( dt2 );
deg_rot_y = TruncateDeg( deg_rot_y + deg_rot_y_inc*((float)dt2*ANIMATION_SPEED) );
}
/* Set ball position */
glTranslatef( ball_x, ball_y, 0.0 );
/*
* Offset the shadow.
*/
if ( drawBallHow == DRAW_BALL_SHADOW )
{
glTranslatef( SHADOW_OFFSET_X,
SHADOW_OFFSET_Y,
SHADOW_OFFSET_Z );
}
/*
* Tilt the ball.
*/
glRotatef( -20.0, 0.0, 0.0, 1.0 );
/*
* Continually rotate ball around Y axis.
*/
glRotatef( deg_rot_y, 0.0, 1.0, 0.0 );
/*
* Set OpenGL state for Boing ball.
*/
glCullFace( GL_FRONT );
glEnable( GL_CULL_FACE );
glEnable( GL_NORMALIZE );
/*
* Build a faceted latitude slice of the Boing ball,
* stepping same-sized vertical bands of the sphere.
*/
for ( lon_deg = 0;
lon_deg < 180;
lon_deg += STEP_LONGITUDE )
{
/*
* Draw a latitude circle at this longitude.
*/
DrawBoingBallBand( lon_deg,
lon_deg + STEP_LONGITUDE );
}
glPopMatrix();
return;
}
/*****************************************************************************
* Bounce the ball.
*****************************************************************************/
void BounceBall( double delta_t )
{
GLfloat sign;
GLfloat deg;
if ( override_pos )
return;
/* Bounce on walls */
if ( ball_x > (BOUNCE_WIDTH/2 + WALL_R_OFFSET ) )
{
ball_x_inc = -0.5f - 0.75f * (GLfloat)rand() / (GLfloat)RAND_MAX;
deg_rot_y_inc = -deg_rot_y_inc;
}
if ( ball_x < -(BOUNCE_HEIGHT/2 + WALL_L_OFFSET) )
{
ball_x_inc = 0.5f + 0.75f * (GLfloat)rand() / (GLfloat)RAND_MAX;
deg_rot_y_inc = -deg_rot_y_inc;
}
/* Bounce on floor / roof */
if ( ball_y > BOUNCE_HEIGHT/2 )
{
ball_y_inc = -0.75f - 1.f * (GLfloat)rand() / (GLfloat)RAND_MAX;
}
if ( ball_y < -BOUNCE_HEIGHT/2*0.85 )
{
ball_y_inc = 0.75f + 1.f * (GLfloat)rand() / (GLfloat)RAND_MAX;
}
/* Update ball position */
ball_x += ball_x_inc * ((float)delta_t*ANIMATION_SPEED);
ball_y += ball_y_inc * ((float)delta_t*ANIMATION_SPEED);
/*
* Simulate the effects of gravity on Y movement.
*/
if ( ball_y_inc < 0 ) sign = -1.0; else sign = 1.0;
deg = (ball_y + BOUNCE_HEIGHT/2) * 90 / BOUNCE_HEIGHT;
if ( deg > 80 ) deg = 80;
if ( deg < 10 ) deg = 10;
ball_y_inc = sign * 4.f * (float) sin_deg( deg );
}
/*****************************************************************************
* Draw a faceted latitude band of the Boing ball.
*
* Parms: long_lo, long_hi
* Low and high longitudes of slice, resp.
*****************************************************************************/
void DrawBoingBallBand( GLfloat long_lo,
GLfloat long_hi )
{
vertex_t vert_ne; /* "ne" means south-east, so on */
vertex_t vert_nw;
vertex_t vert_sw;
vertex_t vert_se;
vertex_t vert_norm;
GLfloat lat_deg;
static int colorToggle = 0;
/*
* Iterate through the points of a latitude circle.
* A latitude circle is a 2D set of X,Z points.
*/
for ( lat_deg = 0;
lat_deg <= (360 - STEP_LATITUDE);
lat_deg += STEP_LATITUDE )
{
/*
* Color this polygon with red or white.
*/
if ( colorToggle )
glColor3f( 0.8f, 0.1f, 0.1f );
else
glColor3f( 0.95f, 0.95f, 0.95f );
#if 0
if ( lat_deg >= 180 )
if ( colorToggle )
glColor3f( 0.1f, 0.8f, 0.1f );
else
glColor3f( 0.5f, 0.5f, 0.95f );
#endif
colorToggle = ! colorToggle;
/*
* Change color if drawing shadow.
*/
if ( drawBallHow == DRAW_BALL_SHADOW )
glColor3f( 0.35f, 0.35f, 0.35f );
/*
* Assign each Y.
*/
vert_ne.y = vert_nw.y = (float) cos_deg(long_hi) * RADIUS;
vert_sw.y = vert_se.y = (float) cos_deg(long_lo) * RADIUS;
/*
* Assign each X,Z with sin,cos values scaled by latitude radius indexed by longitude.
* Eg, long=0 and long=180 are at the poles, so zero scale is sin(longitude),
* while long=90 (sin(90)=1) is at equator.
*/
vert_ne.x = (float) cos_deg( lat_deg ) * (RADIUS * (float) sin_deg( long_lo + STEP_LONGITUDE ));
vert_se.x = (float) cos_deg( lat_deg ) * (RADIUS * (float) sin_deg( long_lo ));
vert_nw.x = (float) cos_deg( lat_deg + STEP_LATITUDE ) * (RADIUS * (float) sin_deg( long_lo + STEP_LONGITUDE ));
vert_sw.x = (float) cos_deg( lat_deg + STEP_LATITUDE ) * (RADIUS * (float) sin_deg( long_lo ));
vert_ne.z = (float) sin_deg( lat_deg ) * (RADIUS * (float) sin_deg( long_lo + STEP_LONGITUDE ));
vert_se.z = (float) sin_deg( lat_deg ) * (RADIUS * (float) sin_deg( long_lo ));
vert_nw.z = (float) sin_deg( lat_deg + STEP_LATITUDE ) * (RADIUS * (float) sin_deg( long_lo + STEP_LONGITUDE ));
vert_sw.z = (float) sin_deg( lat_deg + STEP_LATITUDE ) * (RADIUS * (float) sin_deg( long_lo ));
/*
* Draw the facet.
*/
glBegin( GL_POLYGON );
CrossProduct( vert_ne, vert_nw, vert_sw, &vert_norm );
glNormal3f( vert_norm.x, vert_norm.y, vert_norm.z );
glVertex3f( vert_ne.x, vert_ne.y, vert_ne.z );
glVertex3f( vert_nw.x, vert_nw.y, vert_nw.z );
glVertex3f( vert_sw.x, vert_sw.y, vert_sw.z );
glVertex3f( vert_se.x, vert_se.y, vert_se.z );
glEnd();
#if BOING_DEBUG
printf( "----------------------------------------------------------- \n" );
printf( "lat = %f long_lo = %f long_hi = %f \n", lat_deg, long_lo, long_hi );
printf( "vert_ne x = %.8f y = %.8f z = %.8f \n", vert_ne.x, vert_ne.y, vert_ne.z );
printf( "vert_nw x = %.8f y = %.8f z = %.8f \n", vert_nw.x, vert_nw.y, vert_nw.z );
printf( "vert_se x = %.8f y = %.8f z = %.8f \n", vert_se.x, vert_se.y, vert_se.z );
printf( "vert_sw x = %.8f y = %.8f z = %.8f \n", vert_sw.x, vert_sw.y, vert_sw.z );
#endif
}
/*
* Toggle color so that next band will opposite red/white colors than this one.
*/
colorToggle = ! colorToggle;
/*
* This circular band is done.
*/
return;
}
/*****************************************************************************
* Draw the purple grid of lines, behind the Boing ball.
* When the Workbench is dropped to the bottom, Boing shows 12 rows.
*****************************************************************************/
void DrawGrid( void )
{
int row, col;
const int rowTotal = 12; /* must be divisible by 2 */
const int colTotal = rowTotal; /* must be same as rowTotal */
const GLfloat widthLine = 2.0; /* should be divisible by 2 */
const GLfloat sizeCell = GRID_SIZE / rowTotal;
const GLfloat z_offset = -40.0;
GLfloat xl, xr;
GLfloat yt, yb;
glPushMatrix();
glDisable( GL_CULL_FACE );
/*
* Another relative Z translation to separate objects.
*/
glTranslatef( 0.0, 0.0, DIST_BALL );
/*
* Draw vertical lines (as skinny 3D rectangles).
*/
for ( col = 0; col <= colTotal; col++ )
{
/*
* Compute co-ords of line.
*/
xl = -GRID_SIZE / 2 + col * sizeCell;
xr = xl + widthLine;
yt = GRID_SIZE / 2;
yb = -GRID_SIZE / 2 - widthLine;
glBegin( GL_POLYGON );
glColor3f( 0.6f, 0.1f, 0.6f ); /* purple */
glVertex3f( xr, yt, z_offset ); /* NE */
glVertex3f( xl, yt, z_offset ); /* NW */
glVertex3f( xl, yb, z_offset ); /* SW */
glVertex3f( xr, yb, z_offset ); /* SE */
glEnd();
}
/*
* Draw horizontal lines (as skinny 3D rectangles).
*/
for ( row = 0; row <= rowTotal; row++ )
{
/*
* Compute co-ords of line.
*/
yt = GRID_SIZE / 2 - row * sizeCell;
yb = yt - widthLine;
xl = -GRID_SIZE / 2;
xr = GRID_SIZE / 2 + widthLine;
glBegin( GL_POLYGON );
glColor3f( 0.6f, 0.1f, 0.6f ); /* purple */
glVertex3f( xr, yt, z_offset ); /* NE */
glVertex3f( xl, yt, z_offset ); /* NW */
glVertex3f( xl, yb, z_offset ); /* SW */
glVertex3f( xr, yb, z_offset ); /* SE */
glEnd();
}
glPopMatrix();
return;
}
/*======================================================================*
* main()
*======================================================================*/
int main( void )
{
GLFWwindow* window;
/* Init GLFW */
if( !glfwInit() )
exit( EXIT_FAILURE );
window = glfwCreateWindow( 400, 400, "Boing (classic Amiga demo)", NULL, NULL );
if (!window)
{
glfwTerminate();
exit( EXIT_FAILURE );
}
glfwSetWindowAspectRatio(window, 1, 1);
glfwSetFramebufferSizeCallback(window, reshape);
glfwSetKeyCallback(window, key_callback);
glfwSetMouseButtonCallback(window, mouse_button_callback);
glfwSetCursorPosCallback(window, cursor_position_callback);
glfwMakeContextCurrent(window);
gladLoadGL(glfwGetProcAddress);
glfwSwapInterval( 1 );
glfwGetFramebufferSize(window, &width, &height);
reshape(window, width, height);
glfwSetTime( 0.0 );
init();
/* Main loop */
for (;;)
{
/* Timing */
t = glfwGetTime();
dt = t - t_old;
t_old = t;
/* Draw one frame */
display();
/* Swap buffers */
glfwSwapBuffers(window);
glfwPollEvents();
/* Check if we are still running */
if (glfwWindowShouldClose(window))
break;
}
glfwTerminate();
exit( EXIT_SUCCESS );
}

360
deps/glfw/examples/gears.c vendored Normal file
View File

@ -0,0 +1,360 @@
/*
* 3-D gear wheels. This program is in the public domain.
*
* Command line options:
* -info print GL implementation information
* -exit automatically exit after 30 seconds
*
*
* Brian Paul
*
*
* Marcus Geelnard:
* - Conversion to GLFW
* - Time based rendering (frame rate independent)
* - Slightly modified camera that should work better for stereo viewing
*
*
* Camilla Löwy:
* - Removed FPS counter (this is not a benchmark)
* - Added a few comments
* - Enabled vsync
*/
#if defined(_MSC_VER)
// Make MS math.h define M_PI
#define _USE_MATH_DEFINES
#endif
#include <math.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <glad/gl.h>
#define GLFW_INCLUDE_NONE
#include <GLFW/glfw3.h>
/**
Draw a gear wheel. You'll probably want to call this function when
building a display list since we do a lot of trig here.
Input: inner_radius - radius of hole at center
outer_radius - radius at center of teeth
width - width of gear teeth - number of teeth
tooth_depth - depth of tooth
**/
static void
gear(GLfloat inner_radius, GLfloat outer_radius, GLfloat width,
GLint teeth, GLfloat tooth_depth)
{
GLint i;
GLfloat r0, r1, r2;
GLfloat angle, da;
GLfloat u, v, len;
r0 = inner_radius;
r1 = outer_radius - tooth_depth / 2.f;
r2 = outer_radius + tooth_depth / 2.f;
da = 2.f * (float) M_PI / teeth / 4.f;
glShadeModel(GL_FLAT);
glNormal3f(0.f, 0.f, 1.f);
/* draw front face */
glBegin(GL_QUAD_STRIP);
for (i = 0; i <= teeth; i++) {
angle = i * 2.f * (float) M_PI / teeth;
glVertex3f(r0 * (float) cos(angle), r0 * (float) sin(angle), width * 0.5f);
glVertex3f(r1 * (float) cos(angle), r1 * (float) sin(angle), width * 0.5f);
if (i < teeth) {
glVertex3f(r0 * (float) cos(angle), r0 * (float) sin(angle), width * 0.5f);
glVertex3f(r1 * (float) cos(angle + 3 * da), r1 * (float) sin(angle + 3 * da), width * 0.5f);
}
}
glEnd();
/* draw front sides of teeth */
glBegin(GL_QUADS);
da = 2.f * (float) M_PI / teeth / 4.f;
for (i = 0; i < teeth; i++) {
angle = i * 2.f * (float) M_PI / teeth;
glVertex3f(r1 * (float) cos(angle), r1 * (float) sin(angle), width * 0.5f);
glVertex3f(r2 * (float) cos(angle + da), r2 * (float) sin(angle + da), width * 0.5f);
glVertex3f(r2 * (float) cos(angle + 2 * da), r2 * (float) sin(angle + 2 * da), width * 0.5f);
glVertex3f(r1 * (float) cos(angle + 3 * da), r1 * (float) sin(angle + 3 * da), width * 0.5f);
}
glEnd();
glNormal3f(0.0, 0.0, -1.0);
/* draw back face */
glBegin(GL_QUAD_STRIP);
for (i = 0; i <= teeth; i++) {
angle = i * 2.f * (float) M_PI / teeth;
glVertex3f(r1 * (float) cos(angle), r1 * (float) sin(angle), -width * 0.5f);
glVertex3f(r0 * (float) cos(angle), r0 * (float) sin(angle), -width * 0.5f);
if (i < teeth) {
glVertex3f(r1 * (float) cos(angle + 3 * da), r1 * (float) sin(angle + 3 * da), -width * 0.5f);
glVertex3f(r0 * (float) cos(angle), r0 * (float) sin(angle), -width * 0.5f);
}
}
glEnd();
/* draw back sides of teeth */
glBegin(GL_QUADS);
da = 2.f * (float) M_PI / teeth / 4.f;
for (i = 0; i < teeth; i++) {
angle = i * 2.f * (float) M_PI / teeth;
glVertex3f(r1 * (float) cos(angle + 3 * da), r1 * (float) sin(angle + 3 * da), -width * 0.5f);
glVertex3f(r2 * (float) cos(angle + 2 * da), r2 * (float) sin(angle + 2 * da), -width * 0.5f);
glVertex3f(r2 * (float) cos(angle + da), r2 * (float) sin(angle + da), -width * 0.5f);
glVertex3f(r1 * (float) cos(angle), r1 * (float) sin(angle), -width * 0.5f);
}
glEnd();
/* draw outward faces of teeth */
glBegin(GL_QUAD_STRIP);
for (i = 0; i < teeth; i++) {
angle = i * 2.f * (float) M_PI / teeth;
glVertex3f(r1 * (float) cos(angle), r1 * (float) sin(angle), width * 0.5f);
glVertex3f(r1 * (float) cos(angle), r1 * (float) sin(angle), -width * 0.5f);
u = r2 * (float) cos(angle + da) - r1 * (float) cos(angle);
v = r2 * (float) sin(angle + da) - r1 * (float) sin(angle);
len = (float) sqrt(u * u + v * v);
u /= len;
v /= len;
glNormal3f(v, -u, 0.0);
glVertex3f(r2 * (float) cos(angle + da), r2 * (float) sin(angle + da), width * 0.5f);
glVertex3f(r2 * (float) cos(angle + da), r2 * (float) sin(angle + da), -width * 0.5f);
glNormal3f((float) cos(angle), (float) sin(angle), 0.f);
glVertex3f(r2 * (float) cos(angle + 2 * da), r2 * (float) sin(angle + 2 * da), width * 0.5f);
glVertex3f(r2 * (float) cos(angle + 2 * da), r2 * (float) sin(angle + 2 * da), -width * 0.5f);
u = r1 * (float) cos(angle + 3 * da) - r2 * (float) cos(angle + 2 * da);
v = r1 * (float) sin(angle + 3 * da) - r2 * (float) sin(angle + 2 * da);
glNormal3f(v, -u, 0.f);
glVertex3f(r1 * (float) cos(angle + 3 * da), r1 * (float) sin(angle + 3 * da), width * 0.5f);
glVertex3f(r1 * (float) cos(angle + 3 * da), r1 * (float) sin(angle + 3 * da), -width * 0.5f);
glNormal3f((float) cos(angle), (float) sin(angle), 0.f);
}
glVertex3f(r1 * (float) cos(0), r1 * (float) sin(0), width * 0.5f);
glVertex3f(r1 * (float) cos(0), r1 * (float) sin(0), -width * 0.5f);
glEnd();
glShadeModel(GL_SMOOTH);
/* draw inside radius cylinder */
glBegin(GL_QUAD_STRIP);
for (i = 0; i <= teeth; i++) {
angle = i * 2.f * (float) M_PI / teeth;
glNormal3f(-(float) cos(angle), -(float) sin(angle), 0.f);
glVertex3f(r0 * (float) cos(angle), r0 * (float) sin(angle), -width * 0.5f);
glVertex3f(r0 * (float) cos(angle), r0 * (float) sin(angle), width * 0.5f);
}
glEnd();
}
static GLfloat view_rotx = 20.f, view_roty = 30.f, view_rotz = 0.f;
static GLint gear1, gear2, gear3;
static GLfloat angle = 0.f;
/* OpenGL draw function & timing */
static void draw(void)
{
glClearColor(0.0, 0.0, 0.0, 0.0);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glPushMatrix();
glRotatef(view_rotx, 1.0, 0.0, 0.0);
glRotatef(view_roty, 0.0, 1.0, 0.0);
glRotatef(view_rotz, 0.0, 0.0, 1.0);
glPushMatrix();
glTranslatef(-3.0, -2.0, 0.0);
glRotatef(angle, 0.0, 0.0, 1.0);
glCallList(gear1);
glPopMatrix();
glPushMatrix();
glTranslatef(3.1f, -2.f, 0.f);
glRotatef(-2.f * angle - 9.f, 0.f, 0.f, 1.f);
glCallList(gear2);
glPopMatrix();
glPushMatrix();
glTranslatef(-3.1f, 4.2f, 0.f);
glRotatef(-2.f * angle - 25.f, 0.f, 0.f, 1.f);
glCallList(gear3);
glPopMatrix();
glPopMatrix();
}
/* update animation parameters */
static void animate(void)
{
angle = 100.f * (float) glfwGetTime();
}
/* change view angle, exit upon ESC */
void key( GLFWwindow* window, int k, int s, int action, int mods )
{
if( action != GLFW_PRESS ) return;
switch (k) {
case GLFW_KEY_Z:
if( mods & GLFW_MOD_SHIFT )
view_rotz -= 5.0;
else
view_rotz += 5.0;
break;
case GLFW_KEY_ESCAPE:
glfwSetWindowShouldClose(window, GLFW_TRUE);
break;
case GLFW_KEY_UP:
view_rotx += 5.0;
break;
case GLFW_KEY_DOWN:
view_rotx -= 5.0;
break;
case GLFW_KEY_LEFT:
view_roty += 5.0;
break;
case GLFW_KEY_RIGHT:
view_roty -= 5.0;
break;
default:
return;
}
}
/* new window size */
void reshape( GLFWwindow* window, int width, int height )
{
GLfloat h = (GLfloat) height / (GLfloat) width;
GLfloat xmax, znear, zfar;
znear = 5.0f;
zfar = 30.0f;
xmax = znear * 0.5f;
glViewport( 0, 0, (GLint) width, (GLint) height );
glMatrixMode( GL_PROJECTION );
glLoadIdentity();
glFrustum( -xmax, xmax, -xmax*h, xmax*h, znear, zfar );
glMatrixMode( GL_MODELVIEW );
glLoadIdentity();
glTranslatef( 0.0, 0.0, -20.0 );
}
/* program & OpenGL initialization */
static void init(void)
{
static GLfloat pos[4] = {5.f, 5.f, 10.f, 0.f};
static GLfloat red[4] = {0.8f, 0.1f, 0.f, 1.f};
static GLfloat green[4] = {0.f, 0.8f, 0.2f, 1.f};
static GLfloat blue[4] = {0.2f, 0.2f, 1.f, 1.f};
glLightfv(GL_LIGHT0, GL_POSITION, pos);
glEnable(GL_CULL_FACE);
glEnable(GL_LIGHTING);
glEnable(GL_LIGHT0);
glEnable(GL_DEPTH_TEST);
/* make the gears */
gear1 = glGenLists(1);
glNewList(gear1, GL_COMPILE);
glMaterialfv(GL_FRONT, GL_AMBIENT_AND_DIFFUSE, red);
gear(1.f, 4.f, 1.f, 20, 0.7f);
glEndList();
gear2 = glGenLists(1);
glNewList(gear2, GL_COMPILE);
glMaterialfv(GL_FRONT, GL_AMBIENT_AND_DIFFUSE, green);
gear(0.5f, 2.f, 2.f, 10, 0.7f);
glEndList();
gear3 = glGenLists(1);
glNewList(gear3, GL_COMPILE);
glMaterialfv(GL_FRONT, GL_AMBIENT_AND_DIFFUSE, blue);
gear(1.3f, 2.f, 0.5f, 10, 0.7f);
glEndList();
glEnable(GL_NORMALIZE);
}
/* program entry */
int main(int argc, char *argv[])
{
GLFWwindow* window;
int width, height;
if( !glfwInit() )
{
fprintf( stderr, "Failed to initialize GLFW\n" );
exit( EXIT_FAILURE );
}
glfwWindowHint(GLFW_DEPTH_BITS, 16);
glfwWindowHint(GLFW_TRANSPARENT_FRAMEBUFFER, GLFW_TRUE);
window = glfwCreateWindow( 300, 300, "Gears", NULL, NULL );
if (!window)
{
fprintf( stderr, "Failed to open GLFW window\n" );
glfwTerminate();
exit( EXIT_FAILURE );
}
// Set callback functions
glfwSetFramebufferSizeCallback(window, reshape);
glfwSetKeyCallback(window, key);
glfwMakeContextCurrent(window);
gladLoadGL(glfwGetProcAddress);
glfwSwapInterval( 1 );
glfwGetFramebufferSize(window, &width, &height);
reshape(window, width, height);
// Parse command-line options
init();
// Main loop
while( !glfwWindowShouldClose(window) )
{
// Draw gears
draw();
// Update animation
animate();
// Swap buffers
glfwSwapBuffers(window);
glfwPollEvents();
}
// Terminate GLFW
glfwTerminate();
// Exit program
exit( EXIT_SUCCESS );
}

BIN
deps/glfw/examples/glfw.icns vendored Normal file

Binary file not shown.

BIN
deps/glfw/examples/glfw.ico vendored Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 21 KiB

3
deps/glfw/examples/glfw.rc vendored Normal file
View File

@ -0,0 +1,3 @@
GLFW_ICON ICON "glfw.ico"

512
deps/glfw/examples/heightmap.c vendored Normal file
View File

@ -0,0 +1,512 @@
//========================================================================
// Heightmap example program using OpenGL 3 core profile
// Copyright (c) 2010 Olivier Delannoy
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
//
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
//
// 1. The origin of this software must not be misrepresented; you must not
// claim that you wrote the original software. If you use this software
// in a product, an acknowledgment in the product documentation would
// be appreciated but is not required.
//
// 2. Altered source versions must be plainly marked as such, and must not
// be misrepresented as being the original software.
//
// 3. This notice may not be removed or altered from any source
// distribution.
//
//========================================================================
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <assert.h>
#include <stddef.h>
#include <glad/gl.h>
#define GLFW_INCLUDE_NONE
#include <GLFW/glfw3.h>
/* Map height updates */
#define MAX_CIRCLE_SIZE (5.0f)
#define MAX_DISPLACEMENT (1.0f)
#define DISPLACEMENT_SIGN_LIMIT (0.3f)
#define MAX_ITER (200)
#define NUM_ITER_AT_A_TIME (1)
/* Map general information */
#define MAP_SIZE (10.0f)
#define MAP_NUM_VERTICES (80)
#define MAP_NUM_TOTAL_VERTICES (MAP_NUM_VERTICES*MAP_NUM_VERTICES)
#define MAP_NUM_LINES (3* (MAP_NUM_VERTICES - 1) * (MAP_NUM_VERTICES - 1) + \
2 * (MAP_NUM_VERTICES - 1))
/**********************************************************************
* Default shader programs
*********************************************************************/
static const char* vertex_shader_text =
"#version 150\n"
"uniform mat4 project;\n"
"uniform mat4 modelview;\n"
"in float x;\n"
"in float y;\n"
"in float z;\n"
"\n"
"void main()\n"
"{\n"
" gl_Position = project * modelview * vec4(x, y, z, 1.0);\n"
"}\n";
static const char* fragment_shader_text =
"#version 150\n"
"out vec4 color;\n"
"void main()\n"
"{\n"
" color = vec4(0.2, 1.0, 0.2, 1.0); \n"
"}\n";
/**********************************************************************
* Values for shader uniforms
*********************************************************************/
/* Frustum configuration */
static GLfloat view_angle = 45.0f;
static GLfloat aspect_ratio = 4.0f/3.0f;
static GLfloat z_near = 1.0f;
static GLfloat z_far = 100.f;
/* Projection matrix */
static GLfloat projection_matrix[16] = {
1.0f, 0.0f, 0.0f, 0.0f,
0.0f, 1.0f, 0.0f, 0.0f,
0.0f, 0.0f, 1.0f, 0.0f,
0.0f, 0.0f, 0.0f, 1.0f
};
/* Model view matrix */
static GLfloat modelview_matrix[16] = {
1.0f, 0.0f, 0.0f, 0.0f,
0.0f, 1.0f, 0.0f, 0.0f,
0.0f, 0.0f, 1.0f, 0.0f,
0.0f, 0.0f, 0.0f, 1.0f
};
/**********************************************************************
* Heightmap vertex and index data
*********************************************************************/
static GLfloat map_vertices[3][MAP_NUM_TOTAL_VERTICES];
static GLuint map_line_indices[2*MAP_NUM_LINES];
/* Store uniform location for the shaders
* Those values are setup as part of the process of creating
* the shader program. They should not be used before creating
* the program.
*/
static GLuint mesh;
static GLuint mesh_vbo[4];
/**********************************************************************
* OpenGL helper functions
*********************************************************************/
/* Creates a shader object of the specified type using the specified text
*/
static GLuint make_shader(GLenum type, const char* text)
{
GLuint shader;
GLint shader_ok;
GLsizei log_length;
char info_log[8192];
shader = glCreateShader(type);
if (shader != 0)
{
glShaderSource(shader, 1, (const GLchar**)&text, NULL);
glCompileShader(shader);
glGetShaderiv(shader, GL_COMPILE_STATUS, &shader_ok);
if (shader_ok != GL_TRUE)
{
fprintf(stderr, "ERROR: Failed to compile %s shader\n", (type == GL_FRAGMENT_SHADER) ? "fragment" : "vertex" );
glGetShaderInfoLog(shader, 8192, &log_length,info_log);
fprintf(stderr, "ERROR: \n%s\n\n", info_log);
glDeleteShader(shader);
shader = 0;
}
}
return shader;
}
/* Creates a program object using the specified vertex and fragment text
*/
static GLuint make_shader_program(const char* vs_text, const char* fs_text)
{
GLuint program = 0u;
GLint program_ok;
GLuint vertex_shader = 0u;
GLuint fragment_shader = 0u;
GLsizei log_length;
char info_log[8192];
vertex_shader = make_shader(GL_VERTEX_SHADER, vs_text);
if (vertex_shader != 0u)
{
fragment_shader = make_shader(GL_FRAGMENT_SHADER, fs_text);
if (fragment_shader != 0u)
{
/* make the program that connect the two shader and link it */
program = glCreateProgram();
if (program != 0u)
{
/* attach both shader and link */
glAttachShader(program, vertex_shader);
glAttachShader(program, fragment_shader);
glLinkProgram(program);
glGetProgramiv(program, GL_LINK_STATUS, &program_ok);
if (program_ok != GL_TRUE)
{
fprintf(stderr, "ERROR, failed to link shader program\n");
glGetProgramInfoLog(program, 8192, &log_length, info_log);
fprintf(stderr, "ERROR: \n%s\n\n", info_log);
glDeleteProgram(program);
glDeleteShader(fragment_shader);
glDeleteShader(vertex_shader);
program = 0u;
}
}
}
else
{
fprintf(stderr, "ERROR: Unable to load fragment shader\n");
glDeleteShader(vertex_shader);
}
}
else
{
fprintf(stderr, "ERROR: Unable to load vertex shader\n");
}
return program;
}
/**********************************************************************
* Geometry creation functions
*********************************************************************/
/* Generate vertices and indices for the heightmap
*/
static void init_map(void)
{
int i;
int j;
int k;
GLfloat step = MAP_SIZE / (MAP_NUM_VERTICES - 1);
GLfloat x = 0.0f;
GLfloat z = 0.0f;
/* Create a flat grid */
k = 0;
for (i = 0 ; i < MAP_NUM_VERTICES ; ++i)
{
for (j = 0 ; j < MAP_NUM_VERTICES ; ++j)
{
map_vertices[0][k] = x;
map_vertices[1][k] = 0.0f;
map_vertices[2][k] = z;
z += step;
++k;
}
x += step;
z = 0.0f;
}
#if DEBUG_ENABLED
for (i = 0 ; i < MAP_NUM_TOTAL_VERTICES ; ++i)
{
printf ("Vertice %d (%f, %f, %f)\n",
i, map_vertices[0][i], map_vertices[1][i], map_vertices[2][i]);
}
#endif
/* create indices */
/* line fan based on i
* i+1
* | / i + n + 1
* | /
* |/
* i --- i + n
*/
/* close the top of the square */
k = 0;
for (i = 0 ; i < MAP_NUM_VERTICES -1 ; ++i)
{
map_line_indices[k++] = (i + 1) * MAP_NUM_VERTICES -1;
map_line_indices[k++] = (i + 2) * MAP_NUM_VERTICES -1;
}
/* close the right of the square */
for (i = 0 ; i < MAP_NUM_VERTICES -1 ; ++i)
{
map_line_indices[k++] = (MAP_NUM_VERTICES - 1) * MAP_NUM_VERTICES + i;
map_line_indices[k++] = (MAP_NUM_VERTICES - 1) * MAP_NUM_VERTICES + i + 1;
}
for (i = 0 ; i < (MAP_NUM_VERTICES - 1) ; ++i)
{
for (j = 0 ; j < (MAP_NUM_VERTICES - 1) ; ++j)
{
int ref = i * (MAP_NUM_VERTICES) + j;
map_line_indices[k++] = ref;
map_line_indices[k++] = ref + 1;
map_line_indices[k++] = ref;
map_line_indices[k++] = ref + MAP_NUM_VERTICES;
map_line_indices[k++] = ref;
map_line_indices[k++] = ref + MAP_NUM_VERTICES + 1;
}
}
#ifdef DEBUG_ENABLED
for (k = 0 ; k < 2 * MAP_NUM_LINES ; k += 2)
{
int beg, end;
beg = map_line_indices[k];
end = map_line_indices[k+1];
printf ("Line %d: %d -> %d (%f, %f, %f) -> (%f, %f, %f)\n",
k / 2, beg, end,
map_vertices[0][beg], map_vertices[1][beg], map_vertices[2][beg],
map_vertices[0][end], map_vertices[1][end], map_vertices[2][end]);
}
#endif
}
static void generate_heightmap__circle(float* center_x, float* center_y,
float* size, float* displacement)
{
float sign;
/* random value for element in between [0-1.0] */
*center_x = (MAP_SIZE * rand()) / (float) RAND_MAX;
*center_y = (MAP_SIZE * rand()) / (float) RAND_MAX;
*size = (MAX_CIRCLE_SIZE * rand()) / (float) RAND_MAX;
sign = (1.0f * rand()) / (float) RAND_MAX;
sign = (sign < DISPLACEMENT_SIGN_LIMIT) ? -1.0f : 1.0f;
*displacement = (sign * (MAX_DISPLACEMENT * rand())) / (float) RAND_MAX;
}
/* Run the specified number of iterations of the generation process for the
* heightmap
*/
static void update_map(int num_iter)
{
assert(num_iter > 0);
while(num_iter)
{
/* center of the circle */
float center_x;
float center_z;
float circle_size;
float disp;
size_t ii;
generate_heightmap__circle(&center_x, &center_z, &circle_size, &disp);
disp = disp / 2.0f;
for (ii = 0u ; ii < MAP_NUM_TOTAL_VERTICES ; ++ii)
{
GLfloat dx = center_x - map_vertices[0][ii];
GLfloat dz = center_z - map_vertices[2][ii];
GLfloat pd = (2.0f * (float) sqrt((dx * dx) + (dz * dz))) / circle_size;
if (fabs(pd) <= 1.0f)
{
/* tx,tz is within the circle */
GLfloat new_height = disp + (float) (cos(pd*3.14f)*disp);
map_vertices[1][ii] += new_height;
}
}
--num_iter;
}
}
/**********************************************************************
* OpenGL helper functions
*********************************************************************/
/* Create VBO, IBO and VAO objects for the heightmap geometry and bind them to
* the specified program object
*/
static void make_mesh(GLuint program)
{
GLuint attrloc;
glGenVertexArrays(1, &mesh);
glGenBuffers(4, mesh_vbo);
glBindVertexArray(mesh);
/* Prepare the data for drawing through a buffer inidices */
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, mesh_vbo[3]);
glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(GLuint)* MAP_NUM_LINES * 2, map_line_indices, GL_STATIC_DRAW);
/* Prepare the attributes for rendering */
attrloc = glGetAttribLocation(program, "x");
glBindBuffer(GL_ARRAY_BUFFER, mesh_vbo[0]);
glBufferData(GL_ARRAY_BUFFER, sizeof(GLfloat) * MAP_NUM_TOTAL_VERTICES, &map_vertices[0][0], GL_STATIC_DRAW);
glEnableVertexAttribArray(attrloc);
glVertexAttribPointer(attrloc, 1, GL_FLOAT, GL_FALSE, 0, 0);
attrloc = glGetAttribLocation(program, "z");
glBindBuffer(GL_ARRAY_BUFFER, mesh_vbo[2]);
glBufferData(GL_ARRAY_BUFFER, sizeof(GLfloat) * MAP_NUM_TOTAL_VERTICES, &map_vertices[2][0], GL_STATIC_DRAW);
glEnableVertexAttribArray(attrloc);
glVertexAttribPointer(attrloc, 1, GL_FLOAT, GL_FALSE, 0, 0);
attrloc = glGetAttribLocation(program, "y");
glBindBuffer(GL_ARRAY_BUFFER, mesh_vbo[1]);
glBufferData(GL_ARRAY_BUFFER, sizeof(GLfloat) * MAP_NUM_TOTAL_VERTICES, &map_vertices[1][0], GL_DYNAMIC_DRAW);
glEnableVertexAttribArray(attrloc);
glVertexAttribPointer(attrloc, 1, GL_FLOAT, GL_FALSE, 0, 0);
}
/* Update VBO vertices from source data
*/
static void update_mesh(void)
{
glBufferSubData(GL_ARRAY_BUFFER, 0, sizeof(GLfloat) * MAP_NUM_TOTAL_VERTICES, &map_vertices[1][0]);
}
/**********************************************************************
* GLFW callback functions
*********************************************************************/
static void key_callback(GLFWwindow* window, int key, int scancode, int action, int mods)
{
switch(key)
{
case GLFW_KEY_ESCAPE:
/* Exit program on Escape */
glfwSetWindowShouldClose(window, GLFW_TRUE);
break;
}
}
static void error_callback(int error, const char* description)
{
fprintf(stderr, "Error: %s\n", description);
}
int main(int argc, char** argv)
{
GLFWwindow* window;
int iter;
double dt;
double last_update_time;
int frame;
float f;
GLint uloc_modelview;
GLint uloc_project;
int width, height;
GLuint shader_program;
glfwSetErrorCallback(error_callback);
if (!glfwInit())
exit(EXIT_FAILURE);
glfwWindowHint(GLFW_RESIZABLE, GLFW_FALSE);
glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);
glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 2);
glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);
glfwWindowHint(GLFW_OPENGL_FORWARD_COMPAT, GLFW_TRUE);
window = glfwCreateWindow(800, 600, "GLFW OpenGL3 Heightmap demo", NULL, NULL);
if (! window )
{
glfwTerminate();
exit(EXIT_FAILURE);
}
/* Register events callback */
glfwSetKeyCallback(window, key_callback);
glfwMakeContextCurrent(window);
gladLoadGL(glfwGetProcAddress);
/* Prepare opengl resources for rendering */
shader_program = make_shader_program(vertex_shader_text, fragment_shader_text);
if (shader_program == 0u)
{
glfwTerminate();
exit(EXIT_FAILURE);
}
glUseProgram(shader_program);
uloc_project = glGetUniformLocation(shader_program, "project");
uloc_modelview = glGetUniformLocation(shader_program, "modelview");
/* Compute the projection matrix */
f = 1.0f / tanf(view_angle / 2.0f);
projection_matrix[0] = f / aspect_ratio;
projection_matrix[5] = f;
projection_matrix[10] = (z_far + z_near)/ (z_near - z_far);
projection_matrix[11] = -1.0f;
projection_matrix[14] = 2.0f * (z_far * z_near) / (z_near - z_far);
glUniformMatrix4fv(uloc_project, 1, GL_FALSE, projection_matrix);
/* Set the camera position */
modelview_matrix[12] = -5.0f;
modelview_matrix[13] = -5.0f;
modelview_matrix[14] = -20.0f;
glUniformMatrix4fv(uloc_modelview, 1, GL_FALSE, modelview_matrix);
/* Create mesh data */
init_map();
make_mesh(shader_program);
/* Create vao + vbo to store the mesh */
/* Create the vbo to store all the information for the grid and the height */
/* setup the scene ready for rendering */
glfwGetFramebufferSize(window, &width, &height);
glViewport(0, 0, width, height);
glClearColor(0.0f, 0.0f, 0.0f, 0.0f);
/* main loop */
frame = 0;
iter = 0;
last_update_time = glfwGetTime();
while (!glfwWindowShouldClose(window))
{
++frame;
/* render the next frame */
glClear(GL_COLOR_BUFFER_BIT);
glDrawElements(GL_LINES, 2* MAP_NUM_LINES , GL_UNSIGNED_INT, 0);
/* display and process events through callbacks */
glfwSwapBuffers(window);
glfwPollEvents();
/* Check the frame rate and update the heightmap if needed */
dt = glfwGetTime();
if ((dt - last_update_time) > 0.2)
{
/* generate the next iteration of the heightmap */
if (iter < MAX_ITER)
{
update_map(NUM_ITER_AT_A_TIME);
update_mesh();
iter += NUM_ITER_AT_A_TIME;
}
last_update_time = dt;
frame = 0;
}
}
glfwTerminate();
exit(EXIT_SUCCESS);
}

177
deps/glfw/examples/offscreen.c vendored Normal file
View File

@ -0,0 +1,177 @@
//========================================================================
// Offscreen rendering example
// Copyright (c) Camilla Löwy <elmindreda@glfw.org>
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
//
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
//
// 1. The origin of this software must not be misrepresented; you must not
// claim that you wrote the original software. If you use this software
// in a product, an acknowledgment in the product documentation would
// be appreciated but is not required.
//
// 2. Altered source versions must be plainly marked as such, and must not
// be misrepresented as being the original software.
//
// 3. This notice may not be removed or altered from any source
// distribution.
//
//========================================================================
#include <glad/gl.h>
#define GLFW_INCLUDE_NONE
#include <GLFW/glfw3.h>
#if USE_NATIVE_OSMESA
#define GLFW_EXPOSE_NATIVE_OSMESA
#include <GLFW/glfw3native.h>
#endif
#include "linmath.h"
#include <stdlib.h>
#include <stdio.h>
#define STB_IMAGE_WRITE_IMPLEMENTATION
#include <stb_image_write.h>
static const struct
{
float x, y;
float r, g, b;
} vertices[3] =
{
{ -0.6f, -0.4f, 1.f, 0.f, 0.f },
{ 0.6f, -0.4f, 0.f, 1.f, 0.f },
{ 0.f, 0.6f, 0.f, 0.f, 1.f }
};
static const char* vertex_shader_text =
"#version 110\n"
"uniform mat4 MVP;\n"
"attribute vec3 vCol;\n"
"attribute vec2 vPos;\n"
"varying vec3 color;\n"
"void main()\n"
"{\n"
" gl_Position = MVP * vec4(vPos, 0.0, 1.0);\n"
" color = vCol;\n"
"}\n";
static const char* fragment_shader_text =
"#version 110\n"
"varying vec3 color;\n"
"void main()\n"
"{\n"
" gl_FragColor = vec4(color, 1.0);\n"
"}\n";
static void error_callback(int error, const char* description)
{
fprintf(stderr, "Error: %s\n", description);
}
int main(void)
{
GLFWwindow* window;
GLuint vertex_buffer, vertex_shader, fragment_shader, program;
GLint mvp_location, vpos_location, vcol_location;
float ratio;
int width, height;
mat4x4 mvp;
char* buffer;
glfwSetErrorCallback(error_callback);
glfwInitHint(GLFW_COCOA_MENUBAR, GLFW_FALSE);
if (!glfwInit())
exit(EXIT_FAILURE);
glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 2);
glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 0);
glfwWindowHint(GLFW_VISIBLE, GLFW_FALSE);
window = glfwCreateWindow(640, 480, "Simple example", NULL, NULL);
if (!window)
{
glfwTerminate();
exit(EXIT_FAILURE);
}
glfwMakeContextCurrent(window);
gladLoadGL(glfwGetProcAddress);
// NOTE: OpenGL error checks have been omitted for brevity
glGenBuffers(1, &vertex_buffer);
glBindBuffer(GL_ARRAY_BUFFER, vertex_buffer);
glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW);
vertex_shader = glCreateShader(GL_VERTEX_SHADER);
glShaderSource(vertex_shader, 1, &vertex_shader_text, NULL);
glCompileShader(vertex_shader);
fragment_shader = glCreateShader(GL_FRAGMENT_SHADER);
glShaderSource(fragment_shader, 1, &fragment_shader_text, NULL);
glCompileShader(fragment_shader);
program = glCreateProgram();
glAttachShader(program, vertex_shader);
glAttachShader(program, fragment_shader);
glLinkProgram(program);
mvp_location = glGetUniformLocation(program, "MVP");
vpos_location = glGetAttribLocation(program, "vPos");
vcol_location = glGetAttribLocation(program, "vCol");
glEnableVertexAttribArray(vpos_location);
glVertexAttribPointer(vpos_location, 2, GL_FLOAT, GL_FALSE,
sizeof(vertices[0]), (void*) 0);
glEnableVertexAttribArray(vcol_location);
glVertexAttribPointer(vcol_location, 3, GL_FLOAT, GL_FALSE,
sizeof(vertices[0]), (void*) (sizeof(float) * 2));
glfwGetFramebufferSize(window, &width, &height);
ratio = width / (float) height;
glViewport(0, 0, width, height);
glClear(GL_COLOR_BUFFER_BIT);
mat4x4_ortho(mvp, -ratio, ratio, -1.f, 1.f, 1.f, -1.f);
glUseProgram(program);
glUniformMatrix4fv(mvp_location, 1, GL_FALSE, (const GLfloat*) mvp);
glDrawArrays(GL_TRIANGLES, 0, 3);
glFinish();
#if USE_NATIVE_OSMESA
glfwGetOSMesaColorBuffer(window, &width, &height, NULL, (void**) &buffer);
#else
buffer = calloc(4, width * height);
glReadPixels(0, 0, width, height, GL_RGBA, GL_UNSIGNED_BYTE, buffer);
#endif
// Write image Y-flipped because OpenGL
stbi_write_png("offscreen.png",
width, height, 4,
buffer + (width * 4 * (height - 1)),
-width * 4);
#if USE_NATIVE_OSMESA
// Here is where there's nothing
#else
free(buffer);
#endif
glfwDestroyWindow(window);
glfwTerminate();
exit(EXIT_SUCCESS);
}

1073
deps/glfw/examples/particles.c vendored Normal file

File diff suppressed because it is too large Load Diff

234
deps/glfw/examples/sharing.c vendored Normal file
View File

@ -0,0 +1,234 @@
//========================================================================
// Context sharing example
// Copyright (c) Camilla Löwy <elmindreda@glfw.org>
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
//
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
//
// 1. The origin of this software must not be misrepresented; you must not
// claim that you wrote the original software. If you use this software
// in a product, an acknowledgment in the product documentation would
// be appreciated but is not required.
//
// 2. Altered source versions must be plainly marked as such, and must not
// be misrepresented as being the original software.
//
// 3. This notice may not be removed or altered from any source
// distribution.
//
//========================================================================
#include <glad/gl.h>
#define GLFW_INCLUDE_NONE
#include <GLFW/glfw3.h>
#include <stdio.h>
#include <stdlib.h>
#include "getopt.h"
#include "linmath.h"
static const char* vertex_shader_text =
"#version 110\n"
"uniform mat4 MVP;\n"
"attribute vec2 vPos;\n"
"varying vec2 texcoord;\n"
"void main()\n"
"{\n"
" gl_Position = MVP * vec4(vPos, 0.0, 1.0);\n"
" texcoord = vPos;\n"
"}\n";
static const char* fragment_shader_text =
"#version 110\n"
"uniform sampler2D texture;\n"
"uniform vec3 color;\n"
"varying vec2 texcoord;\n"
"void main()\n"
"{\n"
" gl_FragColor = vec4(color * texture2D(texture, texcoord).rgb, 1.0);\n"
"}\n";
static const vec2 vertices[4] =
{
{ 0.f, 0.f },
{ 1.f, 0.f },
{ 1.f, 1.f },
{ 0.f, 1.f }
};
static void error_callback(int error, const char* description)
{
fprintf(stderr, "Error: %s\n", description);
}
static void key_callback(GLFWwindow* window, int key, int scancode, int action, int mods)
{
if (action == GLFW_PRESS && key == GLFW_KEY_ESCAPE)
glfwSetWindowShouldClose(window, GLFW_TRUE);
}
int main(int argc, char** argv)
{
GLFWwindow* windows[2];
GLuint texture, program, vertex_buffer;
GLint mvp_location, vpos_location, color_location, texture_location;
glfwSetErrorCallback(error_callback);
if (!glfwInit())
exit(EXIT_FAILURE);
glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 2);
glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 0);
windows[0] = glfwCreateWindow(400, 400, "First", NULL, NULL);
if (!windows[0])
{
glfwTerminate();
exit(EXIT_FAILURE);
}
glfwSetKeyCallback(windows[0], key_callback);
glfwMakeContextCurrent(windows[0]);
// Only enable vsync for the first of the windows to be swapped to
// avoid waiting out the interval for each window
glfwSwapInterval(1);
// The contexts are created with the same APIs so the function
// pointers should be re-usable between them
gladLoadGL(glfwGetProcAddress);
// Create the OpenGL objects inside the first context, created above
// All objects will be shared with the second context, created below
{
int x, y;
char pixels[16 * 16];
GLuint vertex_shader, fragment_shader;
glGenTextures(1, &texture);
glBindTexture(GL_TEXTURE_2D, texture);
srand((unsigned int) glfwGetTimerValue());
for (y = 0; y < 16; y++)
{
for (x = 0; x < 16; x++)
pixels[y * 16 + x] = rand() % 256;
}
glTexImage2D(GL_TEXTURE_2D, 0, GL_LUMINANCE, 16, 16, 0, GL_LUMINANCE, GL_UNSIGNED_BYTE, pixels);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
vertex_shader = glCreateShader(GL_VERTEX_SHADER);
glShaderSource(vertex_shader, 1, &vertex_shader_text, NULL);
glCompileShader(vertex_shader);
fragment_shader = glCreateShader(GL_FRAGMENT_SHADER);
glShaderSource(fragment_shader, 1, &fragment_shader_text, NULL);
glCompileShader(fragment_shader);
program = glCreateProgram();
glAttachShader(program, vertex_shader);
glAttachShader(program, fragment_shader);
glLinkProgram(program);
mvp_location = glGetUniformLocation(program, "MVP");
color_location = glGetUniformLocation(program, "color");
texture_location = glGetUniformLocation(program, "texture");
vpos_location = glGetAttribLocation(program, "vPos");
glGenBuffers(1, &vertex_buffer);
glBindBuffer(GL_ARRAY_BUFFER, vertex_buffer);
glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW);
}
glUseProgram(program);
glUniform1i(texture_location, 0);
glEnable(GL_TEXTURE_2D);
glBindTexture(GL_TEXTURE_2D, texture);
glBindBuffer(GL_ARRAY_BUFFER, vertex_buffer);
glEnableVertexAttribArray(vpos_location);
glVertexAttribPointer(vpos_location, 2, GL_FLOAT, GL_FALSE,
sizeof(vertices[0]), (void*) 0);
windows[1] = glfwCreateWindow(400, 400, "Second", NULL, windows[0]);
if (!windows[1])
{
glfwTerminate();
exit(EXIT_FAILURE);
}
// Place the second window to the right of the first
{
int xpos, ypos, left, right, width;
glfwGetWindowSize(windows[0], &width, NULL);
glfwGetWindowFrameSize(windows[0], &left, NULL, &right, NULL);
glfwGetWindowPos(windows[0], &xpos, &ypos);
glfwSetWindowPos(windows[1], xpos + width + left + right, ypos);
}
glfwSetKeyCallback(windows[1], key_callback);
glfwMakeContextCurrent(windows[1]);
// While objects are shared, the global context state is not and will
// need to be set up for each context
glUseProgram(program);
glEnable(GL_TEXTURE_2D);
glBindTexture(GL_TEXTURE_2D, texture);
glBindBuffer(GL_ARRAY_BUFFER, vertex_buffer);
glEnableVertexAttribArray(vpos_location);
glVertexAttribPointer(vpos_location, 2, GL_FLOAT, GL_FALSE,
sizeof(vertices[0]), (void*) 0);
while (!glfwWindowShouldClose(windows[0]) &&
!glfwWindowShouldClose(windows[1]))
{
int i;
const vec3 colors[2] =
{
{ 0.8f, 0.4f, 1.f },
{ 0.3f, 0.4f, 1.f }
};
for (i = 0; i < 2; i++)
{
int width, height;
mat4x4 mvp;
glfwGetFramebufferSize(windows[i], &width, &height);
glfwMakeContextCurrent(windows[i]);
glViewport(0, 0, width, height);
mat4x4_ortho(mvp, 0.f, 1.f, 0.f, 1.f, 0.f, 1.f);
glUniformMatrix4fv(mvp_location, 1, GL_FALSE, (const GLfloat*) mvp);
glUniform3fv(color_location, 1, colors[i]);
glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
glfwSwapBuffers(windows[i]);
}
glfwWaitEvents();
}
glfwTerminate();
exit(EXIT_SUCCESS);
}

166
deps/glfw/examples/simple.c vendored Normal file
View File

@ -0,0 +1,166 @@
//========================================================================
// Simple GLFW example
// Copyright (c) Camilla Löwy <elmindreda@glfw.org>
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
//
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
//
// 1. The origin of this software must not be misrepresented; you must not
// claim that you wrote the original software. If you use this software
// in a product, an acknowledgment in the product documentation would
// be appreciated but is not required.
//
// 2. Altered source versions must be plainly marked as such, and must not
// be misrepresented as being the original software.
//
// 3. This notice may not be removed or altered from any source
// distribution.
//
//========================================================================
//! [code]
#include <glad/gl.h>
#define GLFW_INCLUDE_NONE
#include <GLFW/glfw3.h>
#include "linmath.h"
#include <stdlib.h>
#include <stdio.h>
static const struct
{
float x, y;
float r, g, b;
} vertices[3] =
{
{ -0.6f, -0.4f, 1.f, 0.f, 0.f },
{ 0.6f, -0.4f, 0.f, 1.f, 0.f },
{ 0.f, 0.6f, 0.f, 0.f, 1.f }
};
static const char* vertex_shader_text =
"#version 110\n"
"uniform mat4 MVP;\n"
"attribute vec3 vCol;\n"
"attribute vec2 vPos;\n"
"varying vec3 color;\n"
"void main()\n"
"{\n"
" gl_Position = MVP * vec4(vPos, 0.0, 1.0);\n"
" color = vCol;\n"
"}\n";
static const char* fragment_shader_text =
"#version 110\n"
"varying vec3 color;\n"
"void main()\n"
"{\n"
" gl_FragColor = vec4(color, 1.0);\n"
"}\n";
static void error_callback(int error, const char* description)
{
fprintf(stderr, "Error: %s\n", description);
}
static void key_callback(GLFWwindow* window, int key, int scancode, int action, int mods)
{
if (key == GLFW_KEY_ESCAPE && action == GLFW_PRESS)
glfwSetWindowShouldClose(window, GLFW_TRUE);
}
int main(void)
{
GLFWwindow* window;
GLuint vertex_buffer, vertex_shader, fragment_shader, program;
GLint mvp_location, vpos_location, vcol_location;
glfwSetErrorCallback(error_callback);
if (!glfwInit())
exit(EXIT_FAILURE);
glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 2);
glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 0);
window = glfwCreateWindow(640, 480, "Simple example", NULL, NULL);
if (!window)
{
glfwTerminate();
exit(EXIT_FAILURE);
}
glfwSetKeyCallback(window, key_callback);
glfwMakeContextCurrent(window);
gladLoadGL(glfwGetProcAddress);
glfwSwapInterval(1);
// NOTE: OpenGL error checks have been omitted for brevity
glGenBuffers(1, &vertex_buffer);
glBindBuffer(GL_ARRAY_BUFFER, vertex_buffer);
glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW);
vertex_shader = glCreateShader(GL_VERTEX_SHADER);
glShaderSource(vertex_shader, 1, &vertex_shader_text, NULL);
glCompileShader(vertex_shader);
fragment_shader = glCreateShader(GL_FRAGMENT_SHADER);
glShaderSource(fragment_shader, 1, &fragment_shader_text, NULL);
glCompileShader(fragment_shader);
program = glCreateProgram();
glAttachShader(program, vertex_shader);
glAttachShader(program, fragment_shader);
glLinkProgram(program);
mvp_location = glGetUniformLocation(program, "MVP");
vpos_location = glGetAttribLocation(program, "vPos");
vcol_location = glGetAttribLocation(program, "vCol");
glEnableVertexAttribArray(vpos_location);
glVertexAttribPointer(vpos_location, 2, GL_FLOAT, GL_FALSE,
sizeof(vertices[0]), (void*) 0);
glEnableVertexAttribArray(vcol_location);
glVertexAttribPointer(vcol_location, 3, GL_FLOAT, GL_FALSE,
sizeof(vertices[0]), (void*) (sizeof(float) * 2));
while (!glfwWindowShouldClose(window))
{
float ratio;
int width, height;
mat4x4 m, p, mvp;
glfwGetFramebufferSize(window, &width, &height);
ratio = width / (float) height;
glViewport(0, 0, width, height);
glClear(GL_COLOR_BUFFER_BIT);
mat4x4_identity(m);
mat4x4_rotate_Z(m, m, (float) glfwGetTime());
mat4x4_ortho(p, -ratio, ratio, -1.f, 1.f, 1.f, -1.f);
mat4x4_mul(mvp, p, m);
glUseProgram(program);
glUniformMatrix4fv(mvp_location, 1, GL_FALSE, (const GLfloat*) mvp);
glDrawArrays(GL_TRIANGLES, 0, 3);
glfwSwapBuffers(window);
glfwPollEvents();
}
glfwDestroyWindow(window);
glfwTerminate();
exit(EXIT_SUCCESS);
}
//! [code]

546
deps/glfw/examples/splitview.c vendored Normal file
View File

@ -0,0 +1,546 @@
//========================================================================
// This is an example program for the GLFW library
//
// The program uses a "split window" view, rendering four views of the
// same scene in one window (e.g. useful for 3D modelling software). This
// demo uses scissors to separate the four different rendering areas from
// each other.
//
// (If the code seems a little bit strange here and there, it may be
// because I am not a friend of orthogonal projections)
//========================================================================
#include <glad/gl.h>
#define GLFW_INCLUDE_NONE
#include <GLFW/glfw3.h>
#if defined(_MSC_VER)
// Make MS math.h define M_PI
#define _USE_MATH_DEFINES
#endif
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <linmath.h>
//========================================================================
// Global variables
//========================================================================
// Mouse position
static double xpos = 0, ypos = 0;
// Window size
static int width, height;
// Active view: 0 = none, 1 = upper left, 2 = upper right, 3 = lower left,
// 4 = lower right
static int active_view = 0;
// Rotation around each axis
static int rot_x = 0, rot_y = 0, rot_z = 0;
// Do redraw?
static int do_redraw = 1;
//========================================================================
// Draw a solid torus (use a display list for the model)
//========================================================================
#define TORUS_MAJOR 1.5
#define TORUS_MINOR 0.5
#define TORUS_MAJOR_RES 32
#define TORUS_MINOR_RES 32
static void drawTorus(void)
{
static GLuint torus_list = 0;
int i, j, k;
double s, t, x, y, z, nx, ny, nz, scale, twopi;
if (!torus_list)
{
// Start recording displaylist
torus_list = glGenLists(1);
glNewList(torus_list, GL_COMPILE_AND_EXECUTE);
// Draw torus
twopi = 2.0 * M_PI;
for (i = 0; i < TORUS_MINOR_RES; i++)
{
glBegin(GL_QUAD_STRIP);
for (j = 0; j <= TORUS_MAJOR_RES; j++)
{
for (k = 1; k >= 0; k--)
{
s = (i + k) % TORUS_MINOR_RES + 0.5;
t = j % TORUS_MAJOR_RES;
// Calculate point on surface
x = (TORUS_MAJOR + TORUS_MINOR * cos(s * twopi / TORUS_MINOR_RES)) * cos(t * twopi / TORUS_MAJOR_RES);
y = TORUS_MINOR * sin(s * twopi / TORUS_MINOR_RES);
z = (TORUS_MAJOR + TORUS_MINOR * cos(s * twopi / TORUS_MINOR_RES)) * sin(t * twopi / TORUS_MAJOR_RES);
// Calculate surface normal
nx = x - TORUS_MAJOR * cos(t * twopi / TORUS_MAJOR_RES);
ny = y;
nz = z - TORUS_MAJOR * sin(t * twopi / TORUS_MAJOR_RES);
scale = 1.0 / sqrt(nx*nx + ny*ny + nz*nz);
nx *= scale;
ny *= scale;
nz *= scale;
glNormal3f((float) nx, (float) ny, (float) nz);
glVertex3f((float) x, (float) y, (float) z);
}
}
glEnd();
}
// Stop recording displaylist
glEndList();
}
else
{
// Playback displaylist
glCallList(torus_list);
}
}
//========================================================================
// Draw the scene (a rotating torus)
//========================================================================
static void drawScene(void)
{
const GLfloat model_diffuse[4] = {1.0f, 0.8f, 0.8f, 1.0f};
const GLfloat model_specular[4] = {0.6f, 0.6f, 0.6f, 1.0f};
const GLfloat model_shininess = 20.0f;
glPushMatrix();
// Rotate the object
glRotatef((GLfloat) rot_x * 0.5f, 1.0f, 0.0f, 0.0f);
glRotatef((GLfloat) rot_y * 0.5f, 0.0f, 1.0f, 0.0f);
glRotatef((GLfloat) rot_z * 0.5f, 0.0f, 0.0f, 1.0f);
// Set model color (used for orthogonal views, lighting disabled)
glColor4fv(model_diffuse);
// Set model material (used for perspective view, lighting enabled)
glMaterialfv(GL_FRONT, GL_DIFFUSE, model_diffuse);
glMaterialfv(GL_FRONT, GL_SPECULAR, model_specular);
glMaterialf(GL_FRONT, GL_SHININESS, model_shininess);
// Draw torus
drawTorus();
glPopMatrix();
}
//========================================================================
// Draw a 2D grid (used for orthogonal views)
//========================================================================
static void drawGrid(float scale, int steps)
{
int i;
float x, y;
mat4x4 view;
glPushMatrix();
// Set background to some dark bluish grey
glClearColor(0.05f, 0.05f, 0.2f, 0.0f);
glClear(GL_COLOR_BUFFER_BIT);
// Setup modelview matrix (flat XY view)
{
vec3 eye = { 0.f, 0.f, 1.f };
vec3 center = { 0.f, 0.f, 0.f };
vec3 up = { 0.f, 1.f, 0.f };
mat4x4_look_at(view, eye, center, up);
}
glLoadMatrixf((const GLfloat*) view);
// We don't want to update the Z-buffer
glDepthMask(GL_FALSE);
// Set grid color
glColor3f(0.0f, 0.5f, 0.5f);
glBegin(GL_LINES);
// Horizontal lines
x = scale * 0.5f * (float) (steps - 1);
y = -scale * 0.5f * (float) (steps - 1);
for (i = 0; i < steps; i++)
{
glVertex3f(-x, y, 0.0f);
glVertex3f(x, y, 0.0f);
y += scale;
}
// Vertical lines
x = -scale * 0.5f * (float) (steps - 1);
y = scale * 0.5f * (float) (steps - 1);
for (i = 0; i < steps; i++)
{
glVertex3f(x, -y, 0.0f);
glVertex3f(x, y, 0.0f);
x += scale;
}
glEnd();
// Enable Z-buffer writing again
glDepthMask(GL_TRUE);
glPopMatrix();
}
//========================================================================
// Draw all views
//========================================================================
static void drawAllViews(void)
{
const GLfloat light_position[4] = {0.0f, 8.0f, 8.0f, 1.0f};
const GLfloat light_diffuse[4] = {1.0f, 1.0f, 1.0f, 1.0f};
const GLfloat light_specular[4] = {1.0f, 1.0f, 1.0f, 1.0f};
const GLfloat light_ambient[4] = {0.2f, 0.2f, 0.3f, 1.0f};
float aspect;
mat4x4 view, projection;
// Calculate aspect of window
if (height > 0)
aspect = (float) width / (float) height;
else
aspect = 1.f;
// Clear screen
glClearColor(0.0f, 0.0f, 0.0f, 0.0f);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
// Enable scissor test
glEnable(GL_SCISSOR_TEST);
// Enable depth test
glEnable(GL_DEPTH_TEST);
glDepthFunc(GL_LEQUAL);
// ** ORTHOGONAL VIEWS **
// For orthogonal views, use wireframe rendering
glPolygonMode(GL_FRONT_AND_BACK, GL_LINE);
// Enable line anti-aliasing
glEnable(GL_LINE_SMOOTH);
glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
// Setup orthogonal projection matrix
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glOrtho(-3.0 * aspect, 3.0 * aspect, -3.0, 3.0, 1.0, 50.0);
// Upper left view (TOP VIEW)
glViewport(0, height / 2, width / 2, height / 2);
glScissor(0, height / 2, width / 2, height / 2);
glMatrixMode(GL_MODELVIEW);
{
vec3 eye = { 0.f, 10.f, 1e-3f };
vec3 center = { 0.f, 0.f, 0.f };
vec3 up = { 0.f, 1.f, 0.f };
mat4x4_look_at( view, eye, center, up );
}
glLoadMatrixf((const GLfloat*) view);
drawGrid(0.5, 12);
drawScene();
// Lower left view (FRONT VIEW)
glViewport(0, 0, width / 2, height / 2);
glScissor(0, 0, width / 2, height / 2);
glMatrixMode(GL_MODELVIEW);
{
vec3 eye = { 0.f, 0.f, 10.f };
vec3 center = { 0.f, 0.f, 0.f };
vec3 up = { 0.f, 1.f, 0.f };
mat4x4_look_at( view, eye, center, up );
}
glLoadMatrixf((const GLfloat*) view);
drawGrid(0.5, 12);
drawScene();
// Lower right view (SIDE VIEW)
glViewport(width / 2, 0, width / 2, height / 2);
glScissor(width / 2, 0, width / 2, height / 2);
glMatrixMode(GL_MODELVIEW);
{
vec3 eye = { 10.f, 0.f, 0.f };
vec3 center = { 0.f, 0.f, 0.f };
vec3 up = { 0.f, 1.f, 0.f };
mat4x4_look_at( view, eye, center, up );
}
glLoadMatrixf((const GLfloat*) view);
drawGrid(0.5, 12);
drawScene();
// Disable line anti-aliasing
glDisable(GL_LINE_SMOOTH);
glDisable(GL_BLEND);
// ** PERSPECTIVE VIEW **
// For perspective view, use solid rendering
glPolygonMode(GL_FRONT_AND_BACK, GL_FILL);
// Enable face culling (faster rendering)
glEnable(GL_CULL_FACE);
glCullFace(GL_BACK);
glFrontFace(GL_CW);
// Setup perspective projection matrix
glMatrixMode(GL_PROJECTION);
mat4x4_perspective(projection,
65.f * (float) M_PI / 180.f,
aspect,
1.f, 50.f);
glLoadMatrixf((const GLfloat*) projection);
// Upper right view (PERSPECTIVE VIEW)
glViewport(width / 2, height / 2, width / 2, height / 2);
glScissor(width / 2, height / 2, width / 2, height / 2);
glMatrixMode(GL_MODELVIEW);
{
vec3 eye = { 3.f, 1.5f, 3.f };
vec3 center = { 0.f, 0.f, 0.f };
vec3 up = { 0.f, 1.f, 0.f };
mat4x4_look_at( view, eye, center, up );
}
glLoadMatrixf((const GLfloat*) view);
// Configure and enable light source 1
glLightfv(GL_LIGHT1, GL_POSITION, light_position);
glLightfv(GL_LIGHT1, GL_AMBIENT, light_ambient);
glLightfv(GL_LIGHT1, GL_DIFFUSE, light_diffuse);
glLightfv(GL_LIGHT1, GL_SPECULAR, light_specular);
glEnable(GL_LIGHT1);
glEnable(GL_LIGHTING);
// Draw scene
drawScene();
// Disable lighting
glDisable(GL_LIGHTING);
// Disable face culling
glDisable(GL_CULL_FACE);
// Disable depth test
glDisable(GL_DEPTH_TEST);
// Disable scissor test
glDisable(GL_SCISSOR_TEST);
// Draw a border around the active view
if (active_view > 0 && active_view != 2)
{
glViewport(0, 0, width, height);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glOrtho(0.0, 2.0, 0.0, 2.0, 0.0, 1.0);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glTranslatef((GLfloat) ((active_view - 1) & 1), (GLfloat) (1 - (active_view - 1) / 2), 0.0f);
glColor3f(1.0f, 1.0f, 0.6f);
glBegin(GL_LINE_STRIP);
glVertex2i(0, 0);
glVertex2i(1, 0);
glVertex2i(1, 1);
glVertex2i(0, 1);
glVertex2i(0, 0);
glEnd();
}
}
//========================================================================
// Framebuffer size callback function
//========================================================================
static void framebufferSizeFun(GLFWwindow* window, int w, int h)
{
width = w;
height = h > 0 ? h : 1;
do_redraw = 1;
}
//========================================================================
// Window refresh callback function
//========================================================================
static void windowRefreshFun(GLFWwindow* window)
{
drawAllViews();
glfwSwapBuffers(window);
do_redraw = 0;
}
//========================================================================
// Mouse position callback function
//========================================================================
static void cursorPosFun(GLFWwindow* window, double x, double y)
{
int wnd_width, wnd_height, fb_width, fb_height;
double scale;
glfwGetWindowSize(window, &wnd_width, &wnd_height);
glfwGetFramebufferSize(window, &fb_width, &fb_height);
scale = (double) fb_width / (double) wnd_width;
x *= scale;
y *= scale;
// Depending on which view was selected, rotate around different axes
switch (active_view)
{
case 1:
rot_x += (int) (y - ypos);
rot_z += (int) (x - xpos);
do_redraw = 1;
break;
case 3:
rot_x += (int) (y - ypos);
rot_y += (int) (x - xpos);
do_redraw = 1;
break;
case 4:
rot_y += (int) (x - xpos);
rot_z += (int) (y - ypos);
do_redraw = 1;
break;
default:
// Do nothing for perspective view, or if no view is selected
break;
}
// Remember cursor position
xpos = x;
ypos = y;
}
//========================================================================
// Mouse button callback function
//========================================================================
static void mouseButtonFun(GLFWwindow* window, int button, int action, int mods)
{
if ((button == GLFW_MOUSE_BUTTON_LEFT) && action == GLFW_PRESS)
{
// Detect which of the four views was clicked
active_view = 1;
if (xpos >= width / 2)
active_view += 1;
if (ypos >= height / 2)
active_view += 2;
}
else if (button == GLFW_MOUSE_BUTTON_LEFT)
{
// Deselect any previously selected view
active_view = 0;
}
do_redraw = 1;
}
static void key_callback(GLFWwindow* window, int key, int scancode, int action, int mods)
{
if (key == GLFW_KEY_ESCAPE && action == GLFW_PRESS)
glfwSetWindowShouldClose(window, GLFW_TRUE);
}
//========================================================================
// main
//========================================================================
int main(void)
{
GLFWwindow* window;
// Initialise GLFW
if (!glfwInit())
{
fprintf(stderr, "Failed to initialize GLFW\n");
exit(EXIT_FAILURE);
}
glfwWindowHint(GLFW_SAMPLES, 4);
// Open OpenGL window
window = glfwCreateWindow(500, 500, "Split view demo", NULL, NULL);
if (!window)
{
fprintf(stderr, "Failed to open GLFW window\n");
glfwTerminate();
exit(EXIT_FAILURE);
}
// Set callback functions
glfwSetFramebufferSizeCallback(window, framebufferSizeFun);
glfwSetWindowRefreshCallback(window, windowRefreshFun);
glfwSetCursorPosCallback(window, cursorPosFun);
glfwSetMouseButtonCallback(window, mouseButtonFun);
glfwSetKeyCallback(window, key_callback);
// Enable vsync
glfwMakeContextCurrent(window);
gladLoadGL(glfwGetProcAddress);
glfwSwapInterval(1);
if (GLAD_GL_ARB_multisample || GLAD_GL_VERSION_1_3)
glEnable(GL_MULTISAMPLE_ARB);
glfwGetFramebufferSize(window, &width, &height);
framebufferSizeFun(window, width, height);
// Main loop
for (;;)
{
// Only redraw if we need to
if (do_redraw)
windowRefreshFun(window);
// Wait for new events
glfwWaitEvents();
// Check if the window should be closed
if (glfwWindowShouldClose(window))
break;
}
// Close OpenGL window and terminate GLFW
glfwTerminate();
exit(EXIT_SUCCESS);
}

462
deps/glfw/examples/wave.c vendored Normal file
View File

@ -0,0 +1,462 @@
/*****************************************************************************
* Wave Simulation in OpenGL
* (C) 2002 Jakob Thomsen
* http://home.in.tum.de/~thomsen
* Modified for GLFW by Sylvain Hellegouarch - sh@programmationworld.com
* Modified for variable frame rate by Marcus Geelnard
* 2003-Jan-31: Minor cleanups and speedups / MG
* 2010-10-24: Formatting and cleanup - Camilla Löwy
*****************************************************************************/
#if defined(_MSC_VER)
// Make MS math.h define M_PI
#define _USE_MATH_DEFINES
#endif
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <glad/gl.h>
#define GLFW_INCLUDE_NONE
#include <GLFW/glfw3.h>
#include <linmath.h>
// Maximum delta T to allow for differential calculations
#define MAX_DELTA_T 0.01
// Animation speed (10.0 looks good)
#define ANIMATION_SPEED 10.0
GLfloat alpha = 210.f, beta = -70.f;
GLfloat zoom = 2.f;
double cursorX;
double cursorY;
struct Vertex
{
GLfloat x, y, z;
GLfloat r, g, b;
};
#define GRIDW 50
#define GRIDH 50
#define VERTEXNUM (GRIDW*GRIDH)
#define QUADW (GRIDW - 1)
#define QUADH (GRIDH - 1)
#define QUADNUM (QUADW*QUADH)
GLuint quad[4 * QUADNUM];
struct Vertex vertex[VERTEXNUM];
/* The grid will look like this:
*
* 3 4 5
* *---*---*
* | | |
* | 0 | 1 |
* | | |
* *---*---*
* 0 1 2
*/
//========================================================================
// Initialize grid geometry
//========================================================================
void init_vertices(void)
{
int x, y, p;
// Place the vertices in a grid
for (y = 0; y < GRIDH; y++)
{
for (x = 0; x < GRIDW; x++)
{
p = y * GRIDW + x;
vertex[p].x = (GLfloat) (x - GRIDW / 2) / (GLfloat) (GRIDW / 2);
vertex[p].y = (GLfloat) (y - GRIDH / 2) / (GLfloat) (GRIDH / 2);
vertex[p].z = 0;
if ((x % 4 < 2) ^ (y % 4 < 2))
vertex[p].r = 0.0;
else
vertex[p].r = 1.0;
vertex[p].g = (GLfloat) y / (GLfloat) GRIDH;
vertex[p].b = 1.f - ((GLfloat) x / (GLfloat) GRIDW + (GLfloat) y / (GLfloat) GRIDH) / 2.f;
}
}
for (y = 0; y < QUADH; y++)
{
for (x = 0; x < QUADW; x++)
{
p = 4 * (y * QUADW + x);
quad[p + 0] = y * GRIDW + x; // Some point
quad[p + 1] = y * GRIDW + x + 1; // Neighbor at the right side
quad[p + 2] = (y + 1) * GRIDW + x + 1; // Upper right neighbor
quad[p + 3] = (y + 1) * GRIDW + x; // Upper neighbor
}
}
}
double dt;
double p[GRIDW][GRIDH];
double vx[GRIDW][GRIDH], vy[GRIDW][GRIDH];
double ax[GRIDW][GRIDH], ay[GRIDW][GRIDH];
//========================================================================
// Initialize grid
//========================================================================
void init_grid(void)
{
int x, y;
double dx, dy, d;
for (y = 0; y < GRIDH; y++)
{
for (x = 0; x < GRIDW; x++)
{
dx = (double) (x - GRIDW / 2);
dy = (double) (y - GRIDH / 2);
d = sqrt(dx * dx + dy * dy);
if (d < 0.1 * (double) (GRIDW / 2))
{
d = d * 10.0;
p[x][y] = -cos(d * (M_PI / (double)(GRIDW * 4))) * 100.0;
}
else
p[x][y] = 0.0;
vx[x][y] = 0.0;
vy[x][y] = 0.0;
}
}
}
//========================================================================
// Draw scene
//========================================================================
void draw_scene(GLFWwindow* window)
{
// Clear the color and depth buffers
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
// We don't want to modify the projection matrix
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
// Move back
glTranslatef(0.0, 0.0, -zoom);
// Rotate the view
glRotatef(beta, 1.0, 0.0, 0.0);
glRotatef(alpha, 0.0, 0.0, 1.0);
glDrawElements(GL_QUADS, 4 * QUADNUM, GL_UNSIGNED_INT, quad);
glfwSwapBuffers(window);
}
//========================================================================
// Initialize Miscellaneous OpenGL state
//========================================================================
void init_opengl(void)
{
// Use Gouraud (smooth) shading
glShadeModel(GL_SMOOTH);
// Switch on the z-buffer
glEnable(GL_DEPTH_TEST);
glEnableClientState(GL_VERTEX_ARRAY);
glEnableClientState(GL_COLOR_ARRAY);
glVertexPointer(3, GL_FLOAT, sizeof(struct Vertex), vertex);
glColorPointer(3, GL_FLOAT, sizeof(struct Vertex), &vertex[0].r); // Pointer to the first color
glPointSize(2.0);
// Background color is black
glClearColor(0, 0, 0, 0);
}
//========================================================================
// Modify the height of each vertex according to the pressure
//========================================================================
void adjust_grid(void)
{
int pos;
int x, y;
for (y = 0; y < GRIDH; y++)
{
for (x = 0; x < GRIDW; x++)
{
pos = y * GRIDW + x;
vertex[pos].z = (float) (p[x][y] * (1.0 / 50.0));
}
}
}
//========================================================================
// Calculate wave propagation
//========================================================================
void calc_grid(void)
{
int x, y, x2, y2;
double time_step = dt * ANIMATION_SPEED;
// Compute accelerations
for (x = 0; x < GRIDW; x++)
{
x2 = (x + 1) % GRIDW;
for(y = 0; y < GRIDH; y++)
ax[x][y] = p[x][y] - p[x2][y];
}
for (y = 0; y < GRIDH; y++)
{
y2 = (y + 1) % GRIDH;
for(x = 0; x < GRIDW; x++)
ay[x][y] = p[x][y] - p[x][y2];
}
// Compute speeds
for (x = 0; x < GRIDW; x++)
{
for (y = 0; y < GRIDH; y++)
{
vx[x][y] = vx[x][y] + ax[x][y] * time_step;
vy[x][y] = vy[x][y] + ay[x][y] * time_step;
}
}
// Compute pressure
for (x = 1; x < GRIDW; x++)
{
x2 = x - 1;
for (y = 1; y < GRIDH; y++)
{
y2 = y - 1;
p[x][y] = p[x][y] + (vx[x2][y] - vx[x][y] + vy[x][y2] - vy[x][y]) * time_step;
}
}
}
//========================================================================
// Print errors
//========================================================================
static void error_callback(int error, const char* description)
{
fprintf(stderr, "Error: %s\n", description);
}
//========================================================================
// Handle key strokes
//========================================================================
void key_callback(GLFWwindow* window, int key, int scancode, int action, int mods)
{
if (action != GLFW_PRESS)
return;
switch (key)
{
case GLFW_KEY_ESCAPE:
glfwSetWindowShouldClose(window, GLFW_TRUE);
break;
case GLFW_KEY_SPACE:
init_grid();
break;
case GLFW_KEY_LEFT:
alpha += 5;
break;
case GLFW_KEY_RIGHT:
alpha -= 5;
break;
case GLFW_KEY_UP:
beta -= 5;
break;
case GLFW_KEY_DOWN:
beta += 5;
break;
case GLFW_KEY_PAGE_UP:
zoom -= 0.25f;
if (zoom < 0.f)
zoom = 0.f;
break;
case GLFW_KEY_PAGE_DOWN:
zoom += 0.25f;
break;
default:
break;
}
}
//========================================================================
// Callback function for mouse button events
//========================================================================
void mouse_button_callback(GLFWwindow* window, int button, int action, int mods)
{
if (button != GLFW_MOUSE_BUTTON_LEFT)
return;
if (action == GLFW_PRESS)
{
glfwSetInputMode(window, GLFW_CURSOR, GLFW_CURSOR_DISABLED);
glfwGetCursorPos(window, &cursorX, &cursorY);
}
else
glfwSetInputMode(window, GLFW_CURSOR, GLFW_CURSOR_NORMAL);
}
//========================================================================
// Callback function for cursor motion events
//========================================================================
void cursor_position_callback(GLFWwindow* window, double x, double y)
{
if (glfwGetInputMode(window, GLFW_CURSOR) == GLFW_CURSOR_DISABLED)
{
alpha += (GLfloat) (x - cursorX) / 10.f;
beta += (GLfloat) (y - cursorY) / 10.f;
cursorX = x;
cursorY = y;
}
}
//========================================================================
// Callback function for scroll events
//========================================================================
void scroll_callback(GLFWwindow* window, double x, double y)
{
zoom += (float) y / 4.f;
if (zoom < 0)
zoom = 0;
}
//========================================================================
// Callback function for framebuffer resize events
//========================================================================
void framebuffer_size_callback(GLFWwindow* window, int width, int height)
{
float ratio = 1.f;
mat4x4 projection;
if (height > 0)
ratio = (float) width / (float) height;
// Setup viewport
glViewport(0, 0, width, height);
// Change to the projection matrix and set our viewing volume
glMatrixMode(GL_PROJECTION);
mat4x4_perspective(projection,
60.f * (float) M_PI / 180.f,
ratio,
1.f, 1024.f);
glLoadMatrixf((const GLfloat*) projection);
}
//========================================================================
// main
//========================================================================
int main(int argc, char* argv[])
{
GLFWwindow* window;
double t, dt_total, t_old;
int width, height;
glfwSetErrorCallback(error_callback);
if (!glfwInit())
exit(EXIT_FAILURE);
window = glfwCreateWindow(640, 480, "Wave Simulation", NULL, NULL);
if (!window)
{
glfwTerminate();
exit(EXIT_FAILURE);
}
glfwSetKeyCallback(window, key_callback);
glfwSetFramebufferSizeCallback(window, framebuffer_size_callback);
glfwSetMouseButtonCallback(window, mouse_button_callback);
glfwSetCursorPosCallback(window, cursor_position_callback);
glfwSetScrollCallback(window, scroll_callback);
glfwMakeContextCurrent(window);
gladLoadGL(glfwGetProcAddress);
glfwSwapInterval(1);
glfwGetFramebufferSize(window, &width, &height);
framebuffer_size_callback(window, width, height);
// Initialize OpenGL
init_opengl();
// Initialize simulation
init_vertices();
init_grid();
adjust_grid();
// Initialize timer
t_old = glfwGetTime() - 0.01;
while (!glfwWindowShouldClose(window))
{
t = glfwGetTime();
dt_total = t - t_old;
t_old = t;
// Safety - iterate if dt_total is too large
while (dt_total > 0.f)
{
// Select iteration time step
dt = dt_total > MAX_DELTA_T ? MAX_DELTA_T : dt_total;
dt_total -= dt;
// Calculate wave propagation
calc_grid();
}
// Compute height of each vertex
adjust_grid();
// Draw wave grid to OpenGL display
draw_scene(window);
glfwPollEvents();
}
glfwTerminate();
exit(EXIT_SUCCESS);
}